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1 Introduction

It is commonplace that inverse problems of applied mathematics are often #ll-
posed. Such a problem generally takes the (idealized ) form of a functional

equation involving a map ¢, representing the physical connection between

model and data
¢(z) = 2

with z (the model, or solution) and z (the data) ranging over suitable function
spaces, on which the map ¢ is defined. Such a problem is said to be ill-posed
when—roughly speaking—the solution z does not depend continuously on
the data z. A common, and much-studied, source of ill-conditioning is the
appearance of arbitrary small singular values of the linearized map Dé(z).
We might call the instability of the solution resulting from small singular

values of D¢ linear ill-posedness. See e.g. Tikonov and Arsenin (1974).

Some inverse problems exhibit a form of effective ill-posedness of quite
different nature. This second pathology may appear when the functional

equation is re-written as a best-fit problem:

min|4(z) - 2|
with a suitable choice of norm || ||. Such reformulation might be motivated
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by the recognition that the range of ¢ does not contain all interesting data.
points z—i.e. that the data is likely to be inconsistent, perhaps because of
simplifications in the physics used to formulate the map ¢. If ¢ is “sufficiently

noninear,” the cost function

J(z;2) = ||6(z) — 2|l

may be nonconvex, with many local minima over a prescribed set of ad-
missible models z. For various reasons—e.g. computational cost of global
search—one may be forced to regard any local minimum of J as a “solution.”
Then the existence of many (local) minima must be regarded as a form of
instability of the solution—i.e. nonlinear ill-posedness.

One inverse problem exhibiting a severe case of nonlinear ill-posedness
is the velocity estimation problem of reflection seismology. For an extensive
discussion of this rather specialized problem, with many references, we direct
the reader to the monograph by Santosa and the author (Santosa and Symes,
1989). In the following pages we will mostly discuss instead a much simpler
problem, the plane wave detection problem, which shares the essential math-
ematical features of the velocity estimation problem without carrying the

conceptual baggage of reflection seismology. In the final section we will de-



scribe briefly a version of velocity estimation, to make plausible this sharing
of features.

A deep understanding of nonlinear ill-posedness and related matters is to
be had through G. Chavent’s theory of quasiconver sets in Hilbert space
(Chavent, 1980). The plane-wave detection problem is treated from the
point of view of Chavent’s theory in Symes (1989). In the present paper
we describe just the basic properties of a simple best-fit formulation of the
detection problem (§2), and then indicate how the cost function can be con-
vexified and smoothed (§3). The fourth section begins by describing the
acoustic model of reflection seismology, then presents several simplifications
and approximations leading to a problem recognizably similar to plane wave
detection. We give a brief discussion of this problem, referring the interested

reader to other papers for more information.



2 The Output Least-Squares Formulation

We suppose that the function z({,t) is a sampling on { = 0} of the three-

dimensional field U(¢,n,1):
Z(f,t):U(f,O,t), _ISé-Sl) teR.

We also suppose that U is (approximately) a plane-wave moving at speed 1,
Le.

U(é.»n)t) = u(t _£Sin0 - TICOSG) + "(fa’?,t)

for a waveform u(t), an angle 0, and a noise component n(¢,n,t). The plane-

wave detection problem is:

Given z(¢,t), estimate the waveform u(t) and the angle 0 (or equiva-

lently the sine s = sind).

Because one believes that the noise n(¢,0,¢) is small in the mean-square
sense, or for statistical reasons (Tarantola, 1987), one may assume that z €

L*([~1,1] x IR), and ask that the data z be predicted optimally in the least-

squares sense by a pair u(t),s. That is, making also the a prior: assumption



that supp u C [0,1}, i.e. u € L?[0,1], we define

¢[3,u’](£7t) = u(t_‘gé)
¢ :[=1,1) x L2[0,1] — L*([~1,1] x IR)

Set
Eo = [-1,1] x L?[0,1]

F = I*[-1,1] x R)

with obvious norms. Then an output-least squares formulation of the plane-

wave detection problem is:

. 2
min [[¢fe] - 2|3

Remark One could imagine that U represents the far-field signal of an un-
derwater acoustic source. Then the problem becomes that of estimating the
waveform emitted by the source and its direction relative to a line of receivers.
With this interpretation, our problem becomes a caricature of an important
problem in ocean acoustics. We note that our point of view is quite different
from that taken in the ocean acoustics literature.

An obstacle to the study of the above least-squares problem is immedi-

ately evident: As defined, the map ¢ is

e continuous, but



e nowhere locally uniformly continuous,
e hence a fortiori nowhere differentiable.

In fact

Bls +ds,ul(,t) — Bls, ul(§, 1) = u(t — (s + 83)¢) — u(t ~ s¢)

and the stated properties of ¢ follow from familiar properties of the shift on
L*(IR). Thus we cannot study the dependence of the solution on the data
via the implicit function theorem or related tools, nor can we use Newton’s
method or its relatives to compute minima with any confidence of conver-
gence.

The map ¢ becomes of class C? if its domain is restricted, say, to
E, :=[-1,1] x H}[0,1] .

This restriction does not cure the problem of its delinquent features, of course.
To begin with, in any F-neighborhood of any consistent data point z = ¢(z),
there exist consistent data 2’ = ¢(z'), with 2’| g, as large as one likes.

Therefore some regularization of the optimization problem is necessary, in

order that the solution depend stably on the data, even though ¢ is not a



smoothing operator! This is a rather trivial sort of instability, however; the

actual state of affairs is much worse. We will establish:

There exist consistent data z = (o) with ||zo||g, < 1 for which the

problem

min x)—z
el g, <1 19(2) ==l

has at least two (local) solutions.

Thus restricting the H?-size of the solution does not restore well-posedness
to the best-fit version of the detection problem, even for noise-free data!
Set z(€,t) = uo(t) = ax(t)sinwt with w and a to be determined, and

x € C§°(0,1) fixed. Then

z = @lzo), zo0=1[0,u0] -

For v € L%[0,1], s € [-1,1], = = [s,u],

(z,9[z]) = a /_11 d¢ / dt u(t — s&)x(t) sinwt
= a /_11 dé / dt u(t)x(t + s&)(sin wt cos wsé + cos wt sin wsé)

sin ws

2a

/ dt u(t)x(t) sinwt

ws

+ /_11 d¢ / dt u(t)(x(t + s€) — x(t))[sinwt coswsx + w cos wt sinwsf] .



There is a uniform estimate for derivatives of y of order < 2:
XB(t+s¢) — xB (1) < Clsf

for s € [-1,1], £ € [-1,1], ¢ € IR and k < 2. Accordingly an integration-

by-parts argument shows that the second term is bounded in absolute value

by
aw™2Cs| ||“”H2[0,1] .
Thus
(2, 8[z])F = QSizst (u, wo)z2[01) + O(w™2als] 1l fr3j0,1y) -
So
lélel =2 = Nl + 2l — 246, 2)e
> 2 ol + el = 2 (o))
— Cw™als| llwll 720011
> 5 [(1= P22 (g + ool

— Cw™2als] ||u||H2[0,1]

Integration-by-parts shows that there exist Cy, C, > 0 so that

Cy

w

C
) > luollpeyg > a* (€1 = 22) .

w

a2 (Cl +
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The hypotheses of the statement to be proved allow us to require that

||u||H2[0’1] < 1. Thus for s = £ and = = [sq, u] we get

I¢lel = 2llp > 26 (€4~ ) — G~
w
2 a26’1(2 —_ 6)
provided that
Cre > @ + gl; .
w aw

Now |[uollpapq) < 1, provided |w| > 1 and aw? < K for suitable K > 0.

Thus we take a = Kw™2 so that the above condition becomes
016 2 (202 + CWI{—l)w_l

and is satisfied for any choice of € > 0 as soon as w is large enough.

Now consider the special choice u = aug. Then

sinws

Iéle] = 21l <21+ a* = 2= 22 ug gy + Caw?lsla ol g -

ws

Choose sy = g—::, x = [s1, aup); then the above is

%" -
< 2 [1 +a? — 5_7r] ||u0||zz[0,1] + 3Caarw™ ||u0||H2[0,1]

< 2q? [1 +a? - i—:] (Cl + %) +3aCarw™3.



Choose a = we get

2y _ 4 ( ﬁ) 6¢
2 [1 <5w>2] Gt )t
4 4\ C, 6 C
— 2 _ _ 2 °
= a“C} [2 (1 (57(-)2) + 2 (1 57r2) Cro + 501]{w]

< @0 (2 )

for w large enough.

Now choose € = (57)72. Then we have shown that, for w sufficiently

large
() for any u with [[uley S 1, So=Z, == [so,u]:

1¢z] = 2l = *Ca(2 — ¢)

(11) fOI‘ 81 = ’;"3, Uy = %uo, ry = [sl,u]

|6lz1] — ||z < a®C1(2 — 2€) .

Since any continuous path from z; to zo must pass over the set {z = [s,u] :=
Z, we have shown that the set
{z = [s,u] : ||g[z] — 2|l < a®C1(2 — 3/2¢)}

is not connected; in particular the component containing z; is disjoint from

the component containing zo. The connected component of z is contained
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in
s
Co={z=ls;u): 5] < Z — 6, ull oy < 1}
for a suitable choice of § > 0, and the connected component of z; is contained
in
s
Cy = {:1: =l S48 <5 <1, fullyapey < 1}

which follows from the uniform continuity of ¢ on [—1,1] x H'[0,1] and
the compactness of the injection H> — H'. The sets Cy and C; are closed,
bounded, and convex in E,, hence weakly closed, whence follows the existence
of a local minimizer in each. In particular, we have established the existence
of a local minimum distinct from z,, as required. q-e.d.

It is easy to extend this reasoning to generate examples with any number
of local minima whatsoever. Thus even the restriction of ¢ to a ball in E,

does not suffice to render the output least-squares problem well-posed in the

nonlinear sense.

11



3 The Coherence Reformulation

To motivate the next step, regard the data z({,t) of the detection problem
as a number of independent time series measurements, parameterized by the
location ¢ along the z-axis. This point of view reflects accurately the way
such measurements are actually made—in reality, only a “few” receivers may
be deployed, and the sample rate in £ is far lower than that in .

The plane-wave hypothesis implies that these time series are not inde-
pendent, but are tied rigidly together by the time delay rate s. The difficulty
described in the last section is also a consequence of this rigidity. It is simply
very difficult to match all of the time series at once with any but precisely
the “right” time delay rate. Any other choice results in large mismatch
somewhere.

Our solution to the quandary of the hyperactive behaviour of the model is
to relaz it. We allow independent models of the various traces, constrained by
a penalty for deviation from the plane-wave hypothesis. The penalty is not
“capital punishment,” as in the least-squares approach; models inconsistent
with the plane-wave hypothesis are permitted, but required to pay a “fine”

related to their deviation. The “fine schedule,” ie. penalty weight, is a very

12



important determinant of efficiency of such a scheme.
Precisely, we introduce a cover ¢ of the map 4, that is a diagram of maps

and spaces

b
M

which partially commutes:

if $(&) € R(B), then

$(&) = B(#(a(d)))

We also assume that f§ is injective. As we shall see, it is possible for such a

partially commuting diagram to be constructed with a differentiable ¢, even

though ¢ is not differentiable.

First note the consequence: if

2= B(2)

and qE(:E) = %, then = = a(Z) satisfies #(z) = =2, since B is injective. That
is, the functional equation for ¢ has the “same” solutions as the functional

13



equation for ¢, provided that the data for the former is the image under g8
of the data for the latter.
The space E, as a set, is
E = [-L1]x{a€eH ([-1,1] x [-1,3]) :

u(¢,1)

0’ 1< _Ié"

di 3
6D = 0 t>1+} .

We shall actually need a family of Hilbert spaces E,, o > 0, consisting of the

)

(here the subscript “0” denotes, as before, the norm in L2([~1,1] x [-1, 3]).)

set E equipped with the norm

2

ou
ot

i
9¢

s, @l Iz, =
0

+ o’ (|s|2 +

We shall also need a family of maps
éa:Ea—)F::FEBF

defined by

ou
~ ~ ot
¢a[3>u] =
i O
o (% +5%)

Finally, o and § are given by

afs,i] = [3,%/_11(15%@—35)]

14



ol = |/
0

Obviously 8 is injective. Also, if ¢[s, @] € R(B), then

$O %(f,t) = u(t + s€) for some u € L*(IR).
Because of the assumptions about the support of @, supp u C [0,1].
Moreover

afs, 4] = [s,u] .

Necessarily
Blz, @] = B(g[s,u]) .

As noted above, for consistent data 2 € R(f3), the functional equation for
é has the “same” solution as that for é. On the other hand, ¢, : E, — F
is differentiable—even real-analytic. Of course the diagram above could not
commute if all maps but ¢ were differentiable. In fact, v is not C'. However,
application of @ may be viewed as a “postprocess,” to get from &“1(5) to

#71(z), and does not entail solving a functional equation.

Because ¢, is C? or better, local well-posedness of the least-squares prob-

15



lem

Fols,ill = 2| = T,1s, 2]

min
(s,4)

for near-consistent z follows from a coercivity estimate on the derivative Dé.

Thus assume that
430[30, 170] =Zy= ﬂ(zo) .

We shall prove that

165,64l < Lo[uo] | D¢olso, @][6s, 6|

for some L, > 0. It follows immediately from this estimate and the implicit
function theorem that J, has a unique minimum near [so, tio] for Z near Z.

The main step in the proof of the coercivity estimate is the estimate

2

5 .
iio + Ky | DW so, tio)[6s, 6|5
0

ot

064

2
§sI? < K
0|3| = 2075y

with Ky, K independent of [sq, @o]. Here W is the second component of ¢;:

Wis,a] = Z—? — s%f

and it is assumed that ¢[so, @] € R(B), i.e. in particular that W/s, fio] = 0.

Set
D: = DW]|so,u][és, 6]
_ 0o, _ 96u_ 0
T Tt T e T e

16



Pick &1,& € [—1,1], t2 = t1 + s0(€2 — &1). Then integrate both sides of the

previous equation along the line segment

£ €[, €] — (&t + s0(€ — &)

to get

T =) = [ dDEt+ sle—6) +

+ 861, t1) — 6u(Es, 1 + 5062 — &) -

According to the definition of E, §it = 0 for ¢ < |¢], so (t < 3)

aéu

sacor < [ [P0

SO

2

8u0

(€2 — £1)*}6s)? 2 Cot1)

< 3]; dé |D(E, 1+ s(€ — &)

+12/_31dt{

Now integrate both sides in {;, ¢; and {; in that order to get

0éu

— (1) +

2 001
‘ 08 5)

|

di ?
= < 12||D|)2 + 48

“ A8

whence we can take Ko = 72, K; = 18. Thus the “main step” estimate is

established.

17



To finish the proof of the coercivity estimate, note that

66'&/ 2 au 66,& 2
o <3[||D||0+|6 0 i e L }
0
whence
aa“;’ I (55,80 1,
(‘3 i Tk
_ ﬂ H@&u (|5s|2 “66u )
ot
3&0 Ouop 864 Auo || \
< s 20° + 2190 et 1 DI?.
—( ot 0+70+ i ot ) 8t0 8 457 ot 1Dl
Thus the coercivity estimate is proved with
L oq-2
La[SO,ﬁo]=max{1+21902+7202 %1% (57+18 a(;‘) )} :

As mentioned above, this estimate ensures the local existence, uniqueness,
and continuous dependence of the global minimizer of J, for near-consistent
data, i.e. data near the intersection of the range of ¢, and the range of 3.
This local well-posedness result is just the beginning of the story, of course.

Two questions of immediate “practical” interest are:

(i) How does one ensure that an initial estimate of Z = [s, @] lies suf-
ficiently close to the global minimum of J, to permit convergence

of a Newton-like iterative scheme?

18



(i) How can one be sure that the data is, or is not, close enough to

consistent data that the local well-posedness result holds?

The first question is addressed in the paper (Symes, 1989) using Chavent’s
quasiconvexity theory. There we show that a suitable initial estimate, and

so a convergent quasi-Newton sequence, may be constructed, provided that

(a) the noise level is sufficiently low;

(b) o is chosen sufficiently small initially, and later increased to provide

the maximum level of stability.

All of these results rely on estimates which are doubtless overly conservative.
A major open problem is the derivation of algorithms to estimate appropriate

values of ¢ and of the noise level, hence answering question (ii).
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4 The Seismic Reflection Inverse Problem

In this section we give a rather terse description of the inverse problem of
reflection seismology, and explain its relation to the plane wave detection
problem discussed in the preceding sections.

Reflection seismology is an active remote sensing technique. It currently
yields the most highly detailed images available for study of the earth’s crust
to depths of 15-30 km. The method was developed by the petroleum in-
dustry, but enjoys some use in academic geophysics (tectonics, continental
margins) and engineering geophysics (structure placement, groundwater) as
well.

The data of reflection seismology are measurements of the transient re-
sponse of the crust to controlled energy sources—explosive charges, com-
pressed air devices, dropped weights, hydraulic vibrators, etc. The mea-
surements of ground velocity (on land) or pressure (at sea) are made by a
(typically linear) array of sensors. A typical marine seismic cable used in
oil and gas exploration may be 3 km. long and contain several hundred
hydrophones (immersible microphones), wired together in groups to produce

signals on 48, 96, or even more channels. The sample rate for recording these

20



signals is 250-1000 samples per second, and the typical digitally recorded sig-
nal may be six seconds long. The source may be repeatedly stimulated, each
10 seconds or so, as the exploration vessel steams along towing the cable. A
brief calculation shows that the amount of data recorded in a day’s work by
such a ship is truly phenomenal. In fact, the geophysical exploration industry
has been for many years the single largest industrial user of digital magnetic
tape. An excellent and easily accessible overview of reflection seismology and
other geophysical prospecting methods is provided by Dobrin (1975).

The extraction of useful information from this vast quantity of data is par-
ticularly challenging because of the complex physics of seismic wave propaga-
tion. In fact, this physics is only poorly understood. It is generally accepted
that some modification of linear elasticity might be suitable, as the limited
time-scale and bandwidth of seismic waves conspire to hide or average the
microscopic mechanics of rocks. In fact most of the research literature, and
almost all production software, is based on the acoustic model, which repre-
sents the earth by a fluid. The local linear response of a fluid is characterized
by a density p(z) and sound velocity ¢(z), both functions of spatial position.
If the energy source is assumed isotropic (it isn’t), and small (on the scale of
the dominant wavelength, say) and positioned at x5 then the excess pressure

21



p(z,t) obeys
2
e SR @) = VSVt = 3z )

p(z,t) =0, 1<<0.
In principle, a boundary condition is also needed at the earth/air interface
(z3 = 0: the earth’s surface is flat on the scale of the exploration seismic
experiment!), but for simplicity we shall assume that p,c are constant, at
fixed, known values for z3 < 0 (“up” in geophysics!).

This initial value problem represents the simplest model of seimic wave
propagation retaining most of its notable features. In terms of the model, the

basic problem of reflection seismology is to recover the mechanical descriptors

of the earth, i.e. p(z) and ¢(z), from the idealized surface seismogram
s[p, c](z1, T2, t) = p(z1,22,0,1) .

To exhibit the close relation with the plane-wave detection problem, three
further simplifications are useful. Each limits the utility of the model further

— though the end result can still be used successfully to process field seismic

data!
First, we assume “the earth is layered,” i.e. that p and ¢ depend only on

z = x3. This assumption is a reasonable approximation as sediments which

22



later become rock are laid down in horizontal layers, and retain a large degree
of lateral homogeneity in many areas. Because of the assumed translation
invariance, we can replace the seismogram by a transform in the horizontal

variables. We use the Radon transform, suitably scaled:

P(¢,2,t) //d$1d$2 p(z1, 2,2, + €z1)

which obeys

S 910, ez =
m(&(z)_é) G —5 (& 2,t) — 9z plz) 0z P (& z,t) = f(t)8( s) =0
P&, 2,t) =0, 1<<0.

The plane-wave seismogram is

S[p, c](éat) = P(éaoat) .

Note that the I.V.P. for P is hyperbolic where |{|c(z) < 1

The second simplification is based on the recognition that the density and
velocity in the sedimentary earth exhibit a dichotomy of scales: small-scale
fluctuation in the meters—tens of meters range, corresponding to seasonal and
short-term changes in weather patterns and depositional environment, and
long scale fluctuations in the hundreds or thousands of meters corresponding

to geological, epochal changes. It was recognized early that the short-scale
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fluctuations could be viewed usefully as perturbations about the long-scale

trends (though the mathematical justification for this linearization is recent

and still partial). Accordingly write

p = pstpr
c = ¢ +e
where the subscripts “s” and “r” stand for “smooth” and “rough” respec-

tively. Regular perturbation about ¢;, p, gives
DS[ps; cllpr,¢] = 6P|z=0

where

1(1_62)62613 9 196P 12, &P 8 p, 0P
Cs

D, M2 Bz p, 0z p, & O 0z p? Oz

and

0P =0, t<<0.

Note that 6 P is linear in p, and ¢,, but nonlinear in ps; and c;.

The third simplification is to use geometric optics to approximate the
solution of the above perturbational boundary value problem. This step is
justified by the recognition that the wavelengths measured in seismic records
are quite short compared to scale of the slowly-varying coefficients (c; and
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ps). After some work (e.g. Santosa and Symes, 1988) one obtains

DS[pescalipes r (6 1) ~ Alporesi ) [ﬁ’-’- oy cieﬁi] 0 C(6t)

S 3 8

Here ( is the inverse two-way traveltime, defined implicitly by

¢(&:t) 1
t= 2/ dz — 2
0

c3(2)

and A(ps, ¢5;€,1) is an overall amplitude factor, determined by ray geometry.
Close examination of the last two equations reveals the following compar-

isons with the plane-wave detection problem:

(1) The Radon parameter (“slowness”) € plays the role of receiver co-

ordinate £; t is time in both cases.

(2) The smooth background velocity c, plays the role of the direction
sine s, in that it determines a {-dependent change of variables: for

the reflection seismology problem,

teC(t,8);
for the plane-wave detection problem, the time shift t— t + s€.

(3) pr/ps and c,[c, play the role of the plane waveform u(t).
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In a number of recent papers, we have made deductions for the reflection
seismology model similar to those sketched in sections 1-3 for the plane-
wave detection problem. We have shown that the map (ps,cs, pr,c,) —
DS|ps, ¢s[pr, ¢ is either non-differentiable or has non-coercive derivative,

depending on choice of metric in the domain. We have also posed a coherency

method, by replacing

2 e~ BY
Pr(z) —
ps(Z) d(taé)

and requiring that the reflectivities r; and ry satisfy the coherency conditions:

0
8_€ri0<:0
0

a—grdOC——O

These are analogous to the condition

0

a a
<5€—+S 5;) U(¢,t)
of the plane-wave detection problem. The fit-to-data and coherency con-

straints can be combined into a least-squares problem, just as was shown in

Section 3. We have built a Fortran code to solve the resulting least-squares

problem.
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The theory of this approach to the reflection seismology problem, includ-
ing well-posedness estimates, extension to the original acoustic model (rather
than the simplified, linearized plane wave model), and preliminary numer-
ical experiments, are reported in Symes (1988a,b). Application of the co-
herency technique to field seismic data is accomplished in Symes and Caraz-

zone (1989).
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